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AI Craze… but what are the limitations?
● Novelty?
● Limitations
● Towards Verifiable AI
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Definitions (Oxford dictionary)

AI: The theory and development of computer systems able to perform tasks 
normally requiring human intelligence

ML: The use and development of computer systems that can learn and adapt 
without following explicit instructions, by using algorithms and statistical models 
to analyze and draw inferences from patterns in data.
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History

Is deep learning 3, 30, or 60 years old?

(Olshausen, 1996)

2000s Sparse, Probabilistic, and Energy models (Hinton, Bengio, LeCun, Ng)

Rosenblatt’s Perceptronbased on history by K. Cho
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Many Layer Neural Network

cat 
car
dog 

nothing

different weights =  different computation
Neural Net Training: Find the weights that minimize the difference between labels and activation.
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Approximations

● A deep learning architecture is a multilayer function with 
many parameters

● Parameters are determined by fitting a training set and 
verified using a test set

● Is there any guarantee that this function will approximate 
the «real» function?
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Bottom line:
ML is glorified statistics in CS disguise
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Big Data + Processing Power =
New Age for 

Artificial Intelligence
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2004

2017

Reaching Human-Level Performance
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AI and EDA
Seminal work at IBM (1960s) on realizability of logic functions on 
a gate array: an empirical rule (the Rent’s rule): 

T=tgp

Where T = number of pins on the periphery of the block, g = 
number of internal components, t and p = constant parameters to 
obtain by fitting data (0.5 < p < 0.8)

The rule was based on regular layouts and rich statistical data.
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Growing Use of Machine Learning/Artificial Intelligence in 
Safety-Critical Autonomous Systems 

Growing Concerns about Safety:
• Numerous papers showing that Deep Neural Networks can be easily fooled
• Accidents, including some fatal, involving potential failure of AI/ML-based 

perception systems in self-driving cars

Source: gminsights.com
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Deep Neural Networks Are Easily Fooled
(Nguyen,Yosinki & Clune 2014)
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Concerns around AI biases are mounting

AI transparency tech, also known as explainable AI, traces back outputs 
from AI algorithms to provide a way to understand what’s happening in 
“human terms.”

As AI is increasingly used 
for decision-making across 
industries, understanding 
how and why an algorithm 
makes its decisions can 
help mitigate inherent 
biases associated with 
most AI systems in 
existence today.
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Source: Fiddler Labs
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Engineering “PRACTICE”

Palafitte
2010
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Engineering SCIENCE

Segesta (Σέγεστα) 
Temple, Sicily, 420 BC
(Picture Taken 2020)
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Can Formal Methods Help?

Formal methods = Mathematical, Algorithmic techniques for modeling, design, 
analysis

– Specification: WHAT the system must/must not do
– Verification: WHY it meets the spec. (or not)
– Synthesis: HOW it meets the spec. (correct-by-construction design)

Can we address the Design & Verification challenges of AI/ML-based 
Autonomy with Formal Methods?
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Towards Verifiable AI

• Environment Modeling

• Simulation-Based Verification

• Simulation à Road Testing

• Principles for Verified AI
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Challenges for Verified AI  

System S
Environment E
Specification j

YES [+ proof]
Does S || E 
satisfy j?

NO 
[+ counterexample]

Design Correct-by-
Construction?

Need to Search 
Very High-
Dimensional Input 
and State Spaces
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Need Principles for Verified AI

• Challenges
1. Environment (incl.    

Human) Modeling
2. Formal Specification
3. Learning Systems 

Representation
4. Scalable Training,    

Testing, Verification
5. Design for 

Correctness

• Principles

?
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Environment Modeling: Know Your Assumptions!
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What’s Unknown/  
Uncertain

Approach

Parameters

Behaviors / 
Dynamics

Agents / 
Objects

Probabilistic Programming and Reasoning
[D. Fremont et al., PLDI 2019]

Learning Models from Data/Interaction
[D. Sadigh et al., RSS & IROS 2016;

M. Vazquez-Chanlatte et al., NeurIPS 2018]

Introspective Environment Modeling
[S. A. Seshia, RV 2019]
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Parameters

Behaviors / 
Dynamics

Agents / 
Objects

Probabilistic Programming and Reasoning
[D. Fremont et al., PLDI 2019]

Learning Models from Data/Interaction
[D. Sadigh et al., RSS & IROS 2016;

M. Vazquez-Chanlatte et al., NeurIPS 2018]

Parameters

Behaviors / 
Dynamics

Agents / 
Objects
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SCENIC: 
A Language for Scenario Specification and Data Generation

21

Scenic is an imperative, object-oriented, probabilistic, domain-specific language
Citation:  Daniel Fremont, Edward Kim, ASV et al. “Scenic: A Language for Scenario Specification and Data 
Generation,” Journal of Machine Learning Research, 2020  
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PPL as a scenario specification language enables

1) Scenario-based evaluation
2) Comparison between synthetic and real sensor data at a scenario-level 

to validate simulation test results in the real world
3) Synthesis of scenarios as programs to automate modeling and 

generating realistic environment agent behaviors in simulation
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SCENIC: Probabilistic Programming Language

What makes it probabilistic?

1. The ability to draw values at random from distributions
2. The ability to condition values of variables in a program via observations
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Difference from traditional PPLs?
It does not support inference at this point. However, our research 
investigates what type of inference question should be of interest and the 
relevant inference techniques.

Citation: 
[1]D. Fremont, T. Dreossi, et al, “A language for scenario specification and scene generation,” Programming Language 
Implementation and Design (PLDI), 2018
[2] D. Fremont, Edward Kim, et al. “Scenic: A Language for Scenario Specification and Data Generation,” Journal of 
Machine Learning Research, 2020  
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Syntax on Static Scene Modeling/ Generation

24

Data Types: Booleans, Scalars, Vectors, Headings, Vector Fields, Regions

Distributions: Uniform Continuous/Discrete, Normal, Truncated Normal, Discrete with Weights

Objects: Car, Motorcycle, Bicycle, Pedestrian, Traffic Cone, Trash, etc

Properties: position, viewDistance, heading, viewAngle, width, length, color, speed, behavior, 
requireVisible, regionContainedIn, etc

24
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Example: a Badly-Parked Car
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A SCENIC Program = a Distribution over Scenes

Time = 07: 14
Weather = SUNNY

ego (x,y) = [-209.091, -686.231, 60]
ego heading = 250.641 deg

parkedCar =
[{'model': 'PATRIOT', 
'color': [186, 186, 186], 
'(x,y)': [-201.515, -688.506], 
'heading': 297.434}]

Scene

A scene (i.e. initial condition) consists of (i) a set of objects, (ii) 
semantic features (e.g. position, heading, color, model, etc) 
and (iii) a function that maps each object’s semantic features to 
concrete values. 
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Example: Badly Parked Car Abruptly Pulling Into Ego’s Lane
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Citation:  Daniel Fremont, Edward Kim, et al. “Scenic: A Language for Scenario Specification and Data Generation,” 
Journal of Machine Learning Research, 2020  [In Submission]
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Some Applications of Scenic
• Data Generation, (Re)-Training

– More controllable, interpretable
– Improves performance 

significantly
– Rare scenarios, controlled 

distributions, etc.

• Debugging Failures
– Vary scenarios systematically
– Explain failures of ML

• Design Space Exploration

Car detection 
with 
occlusions

Test Hypothesis: does the car model lead to a mis-detection?

28
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Towards Verifiable AI

• Environment Modeling

• Simulation-Based Verification

• Simulation à Road Testing

• Principles for Verified AI
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Simulation-Based Verification
• Start with System-Level Specification

– Temporal Logic/Cost Function
– Transform Logical Spec into Cost Function
– 𝑮[",$](dist(vehicle, obstacle) > 𝛿)  à inf[0,𝜏] [ dist(vehicle, obstacle) - 𝛿 ] 

• Falsification: Verification as Optimization
– Directed search for property violations in simulation

• Scalability requires Compositional Falsification
– Abstract high-dimensional ML (DNN) models
– Model semantic feature space (e.g. with Scenic program)
– Semantic adversarial analysis of ML models
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VERIFAI: A Toolkit for the Design and Analysis of AI-Based 
Systems [CAV 2019]
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Semantic 
Feature 
Space

Search Monitor

Simulator

Error 
Analysis

System

Environment 
(Scenic pgm)

Specification

Falsification

Data Augmentation/ Retraining

Parameter
Synthesis

Fuzz Testing

Failure 
Analysis

VERIFICATION

DEBUGGING

SYNTHESIS

AUTONOMOUS DRIVING AIRCRAFTROBOTICS
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Case Study for Temporal Logic Falsification with 
VerifAI: Navigation around an accident scenario

Ego Car (AV) Broken Car
Cones

Lane 
Keeping

Lane 
Change

d

d < 15

lane change
complete

32
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Modeling Case Study in the SCENIC Language

33

34

Using Scenic to Generate Initial Scenes

34
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Using Scenic to Generate Initial Scenes

35
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Using Scenic to Generate Initial Scenes

36
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Falsification

37
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Analyzing the failure

d = 30 
Incorrectly detected 14.5

Fix the controller:
Update model assumptions 
and re-design controller 

v < 15
Violates controller 

assumptions

Retrain the perception module:
Collect the counter-example images and 
retrain the network [IJCAI’18]
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Towards Verifiable AI

• Environment Modeling

• Simulation-Based Verification

• Simulation à Road Testing

• Principles for Verified AI
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4
0

#1 Safety violations in simulation: Do they transfer 
to the real world? How well?

#2 Scenario testability: Can we use formally guided 
simulation to effectively design real-world tests?

From Simulation to Real-World Testing: Key Questions

First use of formal methods for scenario-based testing of AI-
based autonomy in both simulation and real world

40
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Create 
Simulated

World 

Specify   
Scenario

Specify 
Safety Metrics 

Temporal 
Logic 

Falsification 
in VerifAI

Test Case 
Selection

Test 
Execution 
on Track

Data 
Analysis

Test 
cases

(safe / 
unsafe)

Test 
cases

(for 
track)

Test 
data

Results, 
Insights

Source: Fremont et al., “Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the 
Real World”, Intelligent Transportation Systems Conference (ITSC), September 2020. 

Scenic

Model

Speed, Acceleration,…
No Collision
Rules of the Road
…

Formal Scenario-Based Testing 
(with Scenic and VerifAI)
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Object & Event 
Detection/Response: 
Metrics & Evaluation

- Object detection
- Time to collision
- Separation distance
- Deceleration profile 
- Autonomy 

Disengagement 

Robotic platform for Test Targets Scenario Execution Scenario Evaluation

Test Equipment and Use at AAA GoMentum Testing 
Grounds
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Results: Does Safety in Simulation à Safety on the Road?
43

Unsafe in simulation à unsafe on the road: 62.5%  (incl. collision)
Safe in simulation à safe on the road: 93.5%  (no collision)

Fundamental Research - Contract FA8750-18-C-0101
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Results: Why did the AV Fail?
44

Perception 
Failure: 
Apollo 3.5 
(Baidu) lost track 
of the pedestrian 
several times

44
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Results: How well do the trajectories match?
45

S1 Run 2 F1 Run 1

Green – AV real
Blue – AV sim

Orange – Ped real
Yellow – Ped sim
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Conclusion: Principles for AI/ML based Autonomy46

Challenges

1. Environment (incl. Human) Modeling

2. Specification

3. Learning Systems Complexity

4. Efficient Training, Testing, 
Verification

5.    Design for Correctness

Core Principles
Data-Driven, Introspective, Probabilistic 
Modeling
Start with System-Level Specification, then 
Component Spec (robustness, …)

Abstraction, Semantic Representation, and 
Explanations
Compositional Analysis and Semantics-
directed Search/Training 
Oracle-Guided Inductive Synthesis; Run-
Time Assurance
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