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Definitions (Oxford dictionary)

Al: The theory and development of computer systems able to perform tasks
normally requiring human intelligence

ML: The use and development of computer systems that can learn and adapt

without following explicit instructions, by using algorithms and statistical models
to analyze and draw inferences from patterns in data.
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Al Craze... but what are the limitations?

« Novelty?
o Limitations
« Towards Verifiable Al
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History

1958 Rosenblatt proposed perceptrons

1980 Neocognitron (Fukushima, 1980)

1982 Hopfield network, SOM (Kohonen, 1982), Neural PCA (0ja, 1982)
1985 Boltzmann machines (Ackley et al., 1985)

1986 Multilayer perceptrons and|backpropagation |(Rumelhart et al., 1986)

1988 RBF networks ( e, 1988
1989 Autoencoders (Baldi&Hornik, 1989),| Convolutional network (LeCun, 1989)

1992 Sigmoid belief network (Neal, 1992)
1993 Sparse coding (Field, 1993)

2000s Sparse, Probabilistic, and Energy models (Hinton, Bengio, LeCun, Ng)

Is deep learning 3, 30, or 60 years old?

E&;Sng by K. Cho Rosenblatt’s Perceptron



Many Layer Neural Network
Approximations

4 hidden layer 1 hidden layer 2 hidden layer 3
input layer

A deep learning architecture is a multilayer function with
cat many parameters
car Parameters are determined by fitting a training set and
dog verified using a test set

nothing Is there any guarantee that this function will approximate
NN the «real» function?

LN

different weights = different computation
Rerlelew Berkele
m Neural Net Training: Find the weights that minimize the difference between labels and activation. y
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Bottom line:
ML is glorified statistics in CS disguise
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Reaching Human-Level Performance

May 11th, 1957
Computer won world champion of chess
(Oesp ry Kot
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Growing Use of Machine Learning/Artificial Intelligence in
Safety-Critical Autonomous Systems
Mark ;tlm:\g)‘:;'

ARTIFICIAL INTELLIGENCE (Al) IN AUTOMOTIVE MARKET

¥ Semi-autonomous vehicles
CATK (2020:26) 7"® market share (2019): 100%

. e Image/signal recognition

>35% >$12BN segment market share (2019):

PERGEPTION CAGR (2020-26) ik P

29/

Machine Learning Data Mining Deep leaming APAC market CAGR
technology segment segment (2020-26): >40%

GI’OWiI"Ig Concerns about Safety: Source: gminsights.com
e Numerous papers showing that Deep Neural Networks can be easily fooled
* Accidents, including some fatal, involving potential failure of Al/ML-based

erception systems in self-driving cars
CTKE €y

UNIVERSITY OF CALIFORNIA

Al and EDA

Seminal work at IBM (1960s) on realizability of logic functions on
a gate array: an empirical rule (the Rent’s rule):

T=tgr

Where T = number of pins on the periphery of the block, g =
number of internal components, t and p = constant parameters to
obtain by fitting data (0.5 < p < 0.8)

The rule was based on regular layouts and rich statistical data.
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Deep Neural Networks Are Easily Fooled

(Nguyen,Y ki & Clune 2014)
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Concerns around Al biases are mounting

Al transparency tech, also known as explainable Al, traces back outputs
from Al algorithms to provide a way to understand what’s happening in

“human terms.”

As Al is increasingly used
for decision-making across
industries,

an algorithm
makes its decisions can

associated with
most Al systems in
existence today.

Berkeley

What is Explainable Al?

Today

Explainable Al

Explainable W Explainable
Al AlProduct
Explanation

Engineering SCIENCE
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(] -~
Palafitte
Confusion with Today's Al Black Box 2010

o When doyou succeed o fail?
+ Howdo l correct an error?

Clear & Transparent Decisions

o lunderstand why
 lunderstand why not

 lunderstand, so| trust you

Engineering “PRACTICE”
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Can Formal Methods Help?

Formal methods = Mathematical, Algorithmic techniques for modeling, design,
analysis

— Specification:  WHAT the system must/must not do
— Verification: WHY it meets the spec. (or not)

— Synthesis: HOW it meets the spec. (correct-by-construction design)

Temple

Can we address the Design & Verification challenges of Al/ML-based
7 2
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Towards Verifiable Al

Environment Modeling
Simulation-Based Verification
Simulation - Road Testing

Principles for Verified Al

Berkeley

Need Principles for Verified Al

+ Challenges
. Environment (incl.
Human) Modeling
. Formal Specification
. Learning Systems
Representation

. Scalable Training,
Testing, Verification

. Design for
Correctness

Berkeley

Principles

?

Challenges for Verified Al

YES [+ proof]

. D
Environment E—>| s;ﬁ?ssfy? (:J? E —<

Specificatipngp— \[0)
Need to Search [+ counterexample]
Very High-
Dimensional Input
and State Spaces
. Design Correct-by-
Berkeley anstruction? Y

Environment Modeling: Know Your Assumptions!

What’s Unknown/ Approach
Uncertain

= Probabilistic Programming and Reasoning

Parameters [D. Fremont et al., PLDI 2019]

) Learning Models from Data/Interaction
Behaviors / [D. Sadigh et al., RSS & IROS 2016;
Dynamics D4 JF M. Vazquez-Chanlatte et al., NeurIPS 2018]

Agents / : Introspective Environment Modeling
Objects \ [S. A. Seshia, RV 2019]
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SCENIC:

A Language for Scenario Specification and Data Generation
PPL as a scenario specification language enables

1) Scenario-based evaluation

2) Comparison between synthetic and real sensor data at a scenario-level
to validate simulation test results in the real world

3) Synthesis of scenarios as programs to automate modeling and
generating realistic environment agent behaviors in simulation

Scenic is an imperative, object-oriented, probabilistic, domain-specific language

Citation: Daniel Fremont, Edward Kim, ASV Scenic: A Language for Scenario Specification and Data
Generation,” Journal of Machine Learning Re: ch, 2020
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SCENIC: Probabilistic Programming Language

Syntax on Static Scene Modeling/ Generation

What makes it probabilistic?

Data Types: Booleans, Scalars, Vectors, Headings, Vector Fields, Regions
1. The ability to draw values at random from distributions

2. The ability to condition values of variables in a program via observations Distributions: Uniform Continuous/Discrete, Normal, Truncated Normal, Discrete with Weights

Objects: Car, Motorcycle, Bicycle, Pedestrian, Traffic Cone, Trash, etc

It does not support inference at this point. However, our research Proper\t/iggl;lpositign,(\;ieV\;QistzTce,theading, viewAngle, width, length, color, speed, behavior,
investigates what type of inference question should be of interest and the TEREAHIIE, g Peen e, GO
relevant inference techniques.

Citation

[1]D. Fremont, T. generation,” Programming Lz

ation and Data Generation,” Journal of
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Example: a Badly-Parked Car

from carla_models import Car, curb, roadDirection

ego = Car

spot = OrientedPoint visible curb
badAngle = Uniform(-1, 1) * Range(10, 20) deg
parkedCar = Car spot 0.5,

badAngle relative to roadDirection

(distance to parkedCar) < 20

class Car:
position: Point road
heading: roadDirection self.position
color: Color.defaultCarColor ()
model: Uniform(xcarModels)

Berkeley

Jeview

27

review frame rate: | 10 g

iote: Previewing requires extra CPU time
especially at high frame rates).

ng page ...
d page.

Start preview

Zisave recording

A SCENIC Program = a Distribution over Scenes

from carla_models import Car, curb, roadDirection
Time = 07: 14
ego = Car Weather = SUNNY

= OrientedPoint visible curb ego (x,y) = [-209.091, -686.231
= Uniform(-1, 1) * Range(10, 20) deg ego heading = 250.641 deg
= Car spot 0.5,

badAngle relative to roadDirection _
parkedCar =

[{model': 'PATRIOT",
‘color': [186, 186, 186],
S - " ] " -- ‘(xy) 1.515, -688.506],
Asceng (i.e. initial condltlonl)l consists lof (i) a set of objects, (ii) ,&eggmg :0295;_534?]8 ]
semantic features (e.g. position, heading, color, model, etc)

and (iii) a function that maps each object’s semantic features to

concrete values.
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(distance to parkedCar) < 20

Some Applications of Scenic

» Data Generation, (Re)-Training
— More controllable, interpretable
— Improves performance
significantly
— Rare scenarios, controlled
distributions, etc.

Car detection
with
occlusions

» Debugging Failures
— Vary scenarios systematicall
— Explain failures of ML

q q Test Hypothesis: does the car model lead to a mis-detection?
. W&w Exploration
UNIVERSITY OF CALIFORNIA




Towards Verifiable Al

Environment Modeling
Simulation-Based Verification
Simulation - Road Testing

Principles for Verified Al

Berkeley

VERIFAIL: A Toolkit for the Design and Analysis of AI-Based @E
SyStemS [CAV 2019]

Fuzz Testing

Falsification
Semantic

Environment _ Feature i = Failure DEBUGGING
(Scenic pgm) Space Analysis
Data Augmentation/ Retraining

Specification ==} Parameter SYNTHESIS
NGESH
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ROBOTICS | AUTONOMOUS DRIVING @ AIRCRAFT

Simulation-Based Verification

- Start with System-Level Specification
— Temporal Logic/Cost Function
— Transform Logical Spec into Cost Function

Go,)(dist(vehicle, obstacle) > &) = infjo- [ dist(vehicle, obstacle) - § ]

 Falsification: Verification as Optimization
— Directed search for property violations in simulation
« Scalability requires Compositional Falsification
— Abstract high-dimensional ML (DNN) models
— Model semantic feature space (e.g. with Scenic program)
— Semantic adversarial analysis of ML models

Berkeley

Case Study for Temporal Logic Falsification with
VerifAl: Navigation around an accident scenario

ane change
complete

Broken Car




Modeling Case Study in the SCENIC Language

# Pick location for blockage randomly along curb
blockageSite = OrientedPoint curb

# Place traffic cones
spotl = OrientedPoint blockageSite (0.3, 1)
conel = TrafficCone spotl,

(0, 360) deg

# Place disabled car ahead of cones
SmallCar spot2 (-1, 0.5) @ (4, 10),
(0, 360) deg
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Using Scenic to Generate Initial Scenes

4

Using Scenic to Generate Initial Scenes

4

7
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Using Scenic to Generate Initial Scenes




Falsification

=
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Towards Verifiable Al

Environment Modeling

Simulation-Based Verification
Simulation > Road Testing

Principles for Verified Al

Berkeley

Analyzing the failure

Fix the controller: Retrain the perception module:
Update model assumptions Collect the counter-example images and
and re-design controller retrain the network [I[JCAI'18]

EIS]
Violates controller
assumptions

Incorrectly detected 14.5

¢

#1 Safety violations in simulation: Do they transfer
to the real world? How well?

#2 Scenario testability: Can we use formally guided
simulation to effectively design real-world tests?

LGSVL
MENTUM 3
‘9 SIMULATOR
Berkeley Sranen 4

to accelerate
le development
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Formal Scenario-Based Testing

(with Scenic and VerifAlI)

[ ] create .
Simulated ® o o '
220 7% Model = = -Go>-
World S @l/% = __& @ '@
Test Test Test Results,
(]
5 Tempo@I cases cases Test data Insights
Specify X v Logic ______, Test Case  ______ S Data | -----4 >
o oot L - > : *  Execution > .
Scenario scepjc  Falsification (safe/ Selection (for on Track Analysis
in VerifAl - nsafe) track)

. L
Specify .-~
Safety Metrics ~ Speed, Acceleration, ...
No Collision
Rules of the Road.

Source: Fremont et al., “Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the
Real World”, Intelligent Transportation Systems Conference (ITSC), September 2020.
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Results: Does Safety in Simulation - Safety on the Road?

Unsafe in simulation = unsafe on the road: 62.5% (incl. collision)

Safe in simulation > safe on the road: 93.5% (no collision)
S ST )

Berkeley

UNIVERSITY OF CALIFORNIA

Test Equipment and Use at AAA GoMentum Testing

Grounds

Robotic platform for Test Targets
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Scenario Execution

Porecsasasescncenans

F
it
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Results: Why did the AV Fail?

Apollo 3.5
(Baidul) lost track
of the pedestrian
several times
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Scenario Evaluation

Object & Event
Detection/Response:
Metrics & Evaluation

Object detection
Time to collision
Separation distance
Deceleration profile
Autonomy
Disengagement

42



. . Conclusion: Principles for AI/ML based Aut 7
Results: How well do the trajectories match? onclusion: Principles for Al/ML based Autonomy
£ 3 ’ : ‘ ’ Challenges Core Principles

Data-Driven, Introspective, Probabilistic
Modeling

Green — AV real o ___, Start with System-Level Specification, then
Blue — AV sim - Specification Component Spec (robustness, ...)

. Environment (incl. Human) Modeling—

Orange — Ped real - Learning Systems Complexity ——+ Abstraction, Semantic Representation, and
Yellow — Ped sim Explanations
. Efficient Training, Testing, —— Compositional Analysis and Semantics—
Verification directed Search/Training
—— Oracle-Guided Inductive Synthesis; Run-
Design for Correctness Time Assurance
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