
Towards Bridging the
Computer Science-Control Theory Divide

And
 why

^
is still difficult

Certifying Autonomous Systems Software
for Modern Architectures

Samarjit Chakraborty

1

The Modern Car

§ 100+ Electronic Control Units (ECUs)
§ Complex in-vehicle network (CAN, FlexRay, Ethernet)
§ 100+ millions of lines of software code
§ ... core of autonomy implemented as distributed control applications

(from safety-critical, driver assistance & comfort domains)
2

source: Bosch

2

3

Development Workflow

Simulation
Code Generation

& Hardware
Implementation

MATLAB/
Simulink

Controller
Design

Platform
Design

Controller
Modeling

Platform
Configuration

SIMTOOLS/
SIMTARGET

Controller
model

Platform
model

System Specification

Software Implementation

?

3

4

Control Algorithms Design
Controller design and modeling is done in MATLAB/Simulink using
closed-loop simulation and analysis

4

5

Platform Architecture Design

Task
schedules

Message
schedules

Platform design and configuration being done using
SIMTOOLS/SIMTARGET (hundreds of parameters)

5

6

Model versus Implementation

Simulation from the
controller design

Software simulation
considering
schedule timings

Simulation from the controller design does not match the
software simulation

Why this discrepency?

6

Control Systems Design and Implementation

7

System
identification

Controller
design

Control system
analysis

system
model controller

Code
generation

Task
partitioning

Task mapping
& scheduling

Message
scheduling

Timing & performance
analysis

Are control
objectives satisfied

NO

Equations

Software

7

The Design Flow

8

Controller Design

Controller Implementation

Control theorist

Computer
engineer

Design assumptions
§ Computing control law takes

negligible time
§ No delay from sensor to controller
§ No delay from controller to actuator
§ No jitter
§ …

Implementation reality
§ Tasks have non-negligible

execution times
§ Often large message delays
§ Time and event-triggered

communication

8

Semantic Gap

9

Controller Design

Controller Implementation

Semantic gap
between

model and implementation

Research Questions?
§ How should we quantify this gap?
§ How should we close this gap?

9

Resource-aware Controller Design

10

Controller Design

Implementation Platform

§ Traditionally, Computer Science has been concerned with efficient
(implementation of) algorithms - computation, communication,
memory, energy, ...

§ Metrics for control algorithms have been different ...

stability, settling time,
peak overshoot, ...

computation, communication
memory, power, ...

Control theory

Computer Science

10

Computation-aware Design

Current approach: Safety = Meet all Deadlines

11

New approach: Ignore the deadlines,
Focus on what really matters

11

§ Multiple controllers on a shared computation resource

§ Two stage process:
§ Control engineers design controllers and set deadlines
§ Embedded systems engineers schedule tasks to meet deadlines

§ Meeting all the deadlines of the control tasks comes at the
expense of pessimistic and inefficient implementations

12

Safety = Meet All Deadlines

12

§ What is the maximum time that a program takes to run on a processor?

13

Worst-Case Execution Times of Tasks

actual bound

estimated bound

Simulation results

path through
a program

13

14

Safety Meet All Deadlines

Can a “system-level” property such as
control safety be preserved despite

some deadlines being missed?

=/

14

15

System-Level Safety

§ How do we define safety?
§ One notion of safety: the plant deviates from an ideal

behavior no more than a predetermined threshold

15

16

§ !
" : in every window of k

periods, at least m deadlines
must be met

§ Example: #
$

§ 1 0 1 1 0 1 0 0 1…

§ A timing constraint !
"

corresponds to multiple such
sequences

Defining Safe Timing Behaviors

Safe and unsafe system-level behaviors

16

Reachability Analysis

17

§ Over-approximating the reachable by computing a box hull of
reachable sets every r steps

17

18

Constraint Synthesis

Safe weakly-hard constraints for Car Suspension (CS)

§ A weakly-hard constraint !
" corresponds to a set of trajectories

§ d m, k : maximum deviation of trajectories that satisfy !
"

§ We mark constrains with d m, k ≤ safety margin as safe

18

19

Constraints Constitute a Regular Language

§ !
" represents a regular language

§ The union of all constraints for a
controller is also regular; we call this a
controller automaton

§ Accepted strings represent safe
schedules for one controller

Schedule satisfying !
"

The automaton modelling the
weakly-hard constraint !

"

19

20

§ Controller automata →
scheduler automaton

§ Accepting string represent safe
schedules for all controllers

§ Interpreting the schedule:
§ Scheduled tasks meet their

deadline for that period
§ Non-scheduled tasks miss their

deadline for that period

Schedule Synthesis from Regular Languages
Dynamical System Period

RC Network (RC) 20 ms

F1Tenth Car (F1) 20 ms

DC Motor (DC) 20 ms

Car Suspension (CS) 20 ms

Cruise Control (CC) 20 ms

20

21

§ Controller automata → scheduler automaton
§ Compose multiple controller automata

Schedule Synthesis from Regular Languages
Dynamical System Period

RC Network (RC) 20 ms

F1Tenth Car (F1) 20 ms

DC Motor (DC) 20 ms

Car Suspension (CS) 20 ms

Cruise Control (CC) 20 ms

+ +

=

21

Workflow and Toolchain for Efficient and Certifiable Design

22

Partial Controller
Specification

Partial Architecture
Specification

Co-optimization
using control + architecture

parameters

sampling rates,
gain values, …

flexible schedules,
task mappings, …

Behavior
Specification

Ongoing NSF project with General Motors & Siemens/Mentor

22

